
 i

A PROJECT REPORT ON

INTERNSHIP AT BOX8

A thesis submitted in partial fulfillment of the requirements for the

award of the degree of

Bachelor of Technology

In Computer Science and Engineering

2018 -2019

By

Janmejay S Purohit

DSU15CS0027

Under the guidance of

Dr. Rajesh T.M.

Assistant Professor

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

DAYANANDA SAGAR UNIVERSITY

Kudlu Gate, Hosur Road, Bangalore – 560068

Dayananda Sagar University, Bangalore

 ii

DAYANANDA SAGAR UNIVERSITY

Kudlu Gate, Hosur Road, Bangalore – 560068

Department of Computer Science and Engineering

BONAFIDE CERTIFICATE

This is to certify that the internship project at Box8 is a bonafide record of the work

done by Janmejay S Purohit (DSU15CS0027) in partial fulfillment of the requirements

for the award of the degree of Bachelor of Technology in Computer Science and

Engineering at the DAYANANDA SAGAR UNIVERSITY, BANGALORE, during the year

2018-2019.

Dr. Rajesh T.M.

 Guide External Examiner

Dr Bondu Venkat Dr. M K Banga Dr. A Srinivas

 Class Advisor Chairman Dean - SoE

Dayananda Sagar University, Bangalore

 iii

ABSTRACT

 Payments in the backbone of any product-based company and for the

customers to be happy, there should not be any discrepancies in the customer

assets. It is the main motive of every company to have a structurally strong

framework for payments and payment related proceedings. I have done my

internship at Box8 in the payments team of the backend department. This report will

tell you about the tasks I completed till date at Box8.

 With emerging technologies and online payments, usage of various payment

options has become a trend. Box8 wants to provide to its customers the liberty to

use various payment options as available in the market. The duty bestowed to me

was to integrate Google Pay payment gateway which uses the Omni Channel API as

defined by the google developer docs.

 With cases of failed transactions or transactions with canceled orders, refunds

usually take 1-2 working days to reflect back in the customer’s initial account used

for payment mode. Since there was an absence of the knowledge about the situation

between the initiation of the request and the completion, I implemented a refund

status check which retrieves the information from the bank.

A worker is a set of code that runs by itself based on the configuration it was

given. A worker was also made which runs by itself at a specified time to retrieve the

status of a refund transaction and updates the same to the database. It runs by itself

and does not need any manual interaction. Logging is done for reference at a point

of time in the future.

Ongoing work right now is the Phone Pe in-App integration. In PhonePe app,

there is a section called Apps. Here, I am having the backend integration part for

Box8 to be a part of PhonePe apps in the food section of Apps in PhonePe. It is a

work in progress and the final implementation will be done soon. Testing is in

progress and the front end collaboration is in process.

Dayananda Sagar University, Bangalore

 iv

ACKNOWLEDGEMENTS

I express my sincere thanks and gratitude to DAYANANDA SAGAR UNIVERSITY

for providing me an opportunity to fulfill my most cherished desire of reaching my

goal and thus helping me to make a bright career.

I am grateful to my project guide Dr. Rajesh T.M., Assistant Professor, Department of

Computer Science and Engineering, DSU, Bangalore, for his valuable guidance,

encouragement and for extending all possible help in timely completion of the

project.

 I would also like to express my sincere gratitude to my Class Advisor Dr Bondu

Venkat, Associate Professor, Department of Computer Science & Engineering, DSU,

Bangalore, for his constant support.

I am highly grateful to Dr. M.K Banga, Chairman, Department of Computer Science

and Engineering, DSU, Bangalore, for his kind support, guidance and encouragement

throughout the course of this internship work.

 I express my heartfelt thanks to Dr. A Srinivas, Dean at the esteemed

institution DSU Bangalore for providing with all the necessities to complete my

internship.

I would like to thank all the teaching and non-teaching staff of Department of

Computer Science and Engineering for their kind co-operation during the course of

the internship work.

Finally, I am thankful to my parents and friends, who helped me in one way or the

other throughout my project work.

Janmejay S Purohit

DSU15CS0027

Dayananda Sagar University, Bangalore

 v

DECLARATION

I, Janmejay S Purohit (DSU15CS0027), student of 8th semester B.Tech in Computer

Science and Engineering, Dayananda Sagar University, Bengaluru, hereby declare

that the internship project at Box8 submitted to the Dayananda Sagar University

during the academic year 2018 - 2019, is a record of an original work done by me

under the guidance of my manager Mr. Abhishek at Box8 and Dr. Rajesh T.M.

assistant professor, Department of Computer Science and Engineering, Dayananda

Sagar University, Bengaluru. This project work is submitted in partial fulfillment for

the award of the degree of Bachelor of Technology. The result embodied has not

been submitted to any other university or institute for the award of any degree.

Date: Janmejay S Purohit

Place: Bengaluru (DSU15CS0027)

Dayananda Sagar University, Bangalore

 vi

TABLE OF CONTENTS

i. ABSTRACT ………………………...………………………………………………………………………….iii

ii. ACKNOWLEDGEMENT ………………………………………………………………………………….iv

iii. DECLARATION ……………………………………………………………………………………..……….v

1. INTRODUCTION ……………………………………………………………………..…………………….1

2. ABOUT BOX8 ………………………………………………………………………….………………….2-3

3. JOB DESCRIPTION ………………………………………………………………………..……………….4

4. SYSTEM REQUIREMENTS

 4.1. Functional Requirements ……………………………………………………………………5

 4.2. Non-functional Requirements ………………………………………………….…………5

 4.3. Software Requirements ………………………………………………………………………5

 4.4. Hardware Requirements ……………………………………………….……………………5

5. LITERATURE REVIEW

 5.1 Ruby on Rail ………………………………………………….……………………………………6

 5.2. Rspec …………………………….………………………….……..………………………………6-7

 5.3. PostgreSQL …………………………………………………………………………………………7

 5.4. Kibana ……………………………………….……….………………………………………………7

 5.5. Redis ……………………………………………………………………….………….………………8

 5.6. Redash ……………………………………………….………………………………………………9

 5.7. GitLab ……………………………………………………………………………………………9-10

 5.8. Sidekiq ……………………………………….…………………………………………………… 10

6. REFUND STATUS CHECK

 6.1. Objective ……………………………..……………………………………………………………11

 6.2. Procedure …………………………………………………………………………………………11

 6.3. Flowchart …………………………………………………….……………………………………12

Dayananda Sagar University, Bangalore

 vii

 6.4. Inputs ……………………………………………….………………………………………………12

 6.5. Outputs …………………………………….…………………………………………………13-14

7. REFUND INTEGRITY WORKER

 7.1. Objective ……………………………..……………………………………………………………15

 7.2. Procedure ……………………………………………………………………………………15-16

 7.3. Inputs ……………………………………………….………………………………………………16

 7.4. Flowchart …………………………………………….……………………………………………17

 7.5. Outputs …………………………………….………………………………………………………18

8. GOOGLE PAY INTEGRATION

 8.1. Objective ……………………………..……………………………………………………………19

 8.2. APIs ……………………………………………….………………………………………………….19

 8.3. Process ……………………………………………….……………………………………….19-30

 8.4. Flowchart ……………………………………………….……………………………………31-32

 8.5. Outputs …………………………………….…………………………………………………33-36

9. PHONEPE INAPP INTEGRATION

 9.1. Objective ……………………………..……………………………………………………………37

 9.2. Procedure ……………………………………………………………………………………37-38

 9.3. Flowchart ………………………………………………………………………………………….39

 9.4. Inputs ……………………………………………….………………………………………………40

 9.5. Outputs …………………………………….…………………………………………………41-43

10. CONCLUSION AND FUTURE WORK ……………………………………………….…………………44

11. REFERENCES ……………………………………………………………………………………………………45

Dayananda Sagar University, Bangalore

 viii

TABLE OF FIGURES

No. Name. Page.

Fig 6.1 Refund Status Check Flowchart ……………………………………………. 12

Fig 6.2 Refund Status Check Output ………………………………………………… 13

Fig 6.3 Refund Status Check Output ………………………………………………… 14

Fig 7.1 Refund Integrity Worker Flowchart ……………………………………… 17

Fig7.2 Refund Integrity Worker Output .………………………………………… 18

Fig 8.1 Google Pay Collect Flowchart ………………………………………………… 31

Fig 8.2 Google Pay Collect Flowchart ………………………………………………… 32

Fig 8.3 Google Pay Intent Output …..………………………………………………… 33

Fig 8.4 Google Pay Collect Output - Build Cart ………………………………….. 34

Fig 8.5 Google Pay Collect Output - Polling ……………………………………….. 34

Fig 8.6 Google Pay Collect Output - Polling …………………………………..…… 35

Fig 8.7 Googl e Pay Collect Output - Payment Process ………………………. 35

Fig 8.8 Google Pay Collect Output - Payment Process ………………………. 35

Fig 8.9 Google Pay Collect Output - Payment Process ………………………. 35

Fig 8.10 Google Pay Collect Output - Payment Process ………………………. 36

Fig 8.11 Google Pay Collect Output - Order Creation …………………………… 36

Fig 9.1 PhonePe Flowchart …………………………………..……………………………. 39

Fig 9.2 PhonePe Output - Select Apps …………………………………..…………… 41

Fig 9.3 PhonePe Output - Open Box8 …………………………………..…………… 41

Fig 9.4 PhonePe Output - Build cart ……………………………………..…………… 42

Fig 9.5 PhonePe Output - Request for details …………………………………..… 42

Fig 9.6 PhonePe Output - Verify Customer Name ………………………………. 42

Fig 9.7 PhonePe Output - Select Address …………………………………..……….. 42

Dayananda Sagar University, Bangalore

 ix

Fig 9.8 PhonePe Output - Payment Method …………………………………..……….. 43

Fig 9.9 PhonePe Output - Payment Process …………………………………..……….. 43

Fig 9.10 PhonePe Output - Order Creation …………………………………..………….. 43

Dayananda Sagar University, Bangalore

◢ Internship at Box8 ◤ 1

CHAPTER 1: INTRODUCTION

This report is a summary of my internship program at Box8 which was from 15th

January 2019 to 15th June 2019 at Box8. My main duties included integration of

payment gateways, bug fixes, server to server communication and payment

transaction proceedings. During the course of the internship I worked on Ruby on

Rails.

A payment gateway is a merchant service provided by any e-commerce application

service provider for online payments. It authorizes credit card, debit card or direct

payments processing for e-businesses, bricks and clicks, online retailers, or

traditional brick and mortar. The payment gateway is given to the merchant by a

bank, however, it can be provided by a specialized financial service provider as a

separate service, such as a payment service provider.

A payment gateway helps make a payment transaction by the transfer of information

between a payment portal (here, Box8) and the processor or the bank.

Other than integration of payment gateways, the tasks given to me were various bug

fixes and server to server communication.

A refund status worker fetches the previous transactions batch-wise and logs the

transactions and their refund state by making API calls to the bank server as listed in

the payment gateway details of the details stored related to the transaction in our

database. It also takes care of any promotions applied at the time of payment

example given the Box8 money and updates the status in the refund details table.

Another segment was the refund checker, that assigns the status code to the refund

transaction and determines its state whether the transaction is pending, approved

or rejected by making server to server API calls.

There were many obstacles that came during the work, but with the help of my

mentors I was able to solve them and deliver working modules.

Dayananda Sagar University, Bangalore

◢ Internship at Box8 ◤ 2

CHAPTER 2: ABOUT BOX8

Box8 is a Mumbai-based on-demand food delivery company that managed to turn

heads in a small amount of time. Founded by two IIT graduates Anshul Gupta & Amit

Raj, BOX8 was started as a small outlet in a corporate cafeteria. As Box8 shares the

quote “The idea was to serve Irresistible Desi Meals in a convenient, easy-to-carry

box”.

Today, the company serves over 22,000+ meals every day across its 100+ outlets in

Mumbai, Pune, Bangalore & Gurgaon!

It began as Poncho in 2011 serving just Mexican dishes in the quick service format,

the company expanded its menu and rebranded (to Box8) in July 2012.

The co-founders Amit Raj and Anshul Gupta, both IIT alumni aimed to make their

company the go to option for everyone who wanted to order great tasting food. Box8

is at present in Mumbai, Bangalore and Gurugram and has more than a hundred

outlets over the cities. With more than 22,000 transactions for each day, Box8 has

become 10x over the most recent years.

MOJO Pizza specializes in awesome Pizzas with presence at around 50+ different

locations in Mumbai, Bangalore & Pune. The IT infrastructure is the same for both

Box8 and MOJO Pizza. MOJO Pizza delivers delicious, wide range of pizzas.

Great care is taken to bifurcate the vegetarian and non-vegetarian racks at the

kitchens and quality assessment is considered to be its top priority. Each outlet has

an outlet manager who administers the total working and co-ordination of the outlet

with respect to the delivery boys, customer care, order intake, refunds and complete

administration.

Highly talented and motivated developers are hand picked from various IITs, NITs

and top-notch universities across various cities of India and with the help of their

ability, the technology at Box8 is top notch.

The outlets for both Box8 and MOJO Pizza are the same and are spread across

Mumbai, Pune, Bangalore & Gurgaon.

The organization's strong attention towards taste, innovation and development has

reverberated well with customers, as 80% of its day by day exchanges come from

Dayananda Sagar University, Bangalore

◢ Internship at Box8 ◤ 3

rehash clients. Reasonable estimating, famous sustenance decisions and Indian

cooking has reverberated well with its young urban client base.

Poncho Hospitality Private Limited is popularly known as Box8. The registered office

of the company is at No.117, 27th Main, HRS Layout 2nd Sector, (Agara) Extension,

Bangalore, Bangalore, Karnataka. MOJOPizza and Box8 are both brands under

Poncho Hospitality Private Limited.

Below are some exciting facts about Box8:

• Rapid growth (10X) in last couple of years - selling 7 lakh+ meals per month.

• Well-Funded by ace venture funds like Mayfield, IIFL & IAN.

• Already profitable - poised to grow multi-fold in the coming quarters.

• Huge opportunity to emerge as a leader in this rapidly growing industry, a

large part of which is still unorganized.

• Set to expand to 3 new cities over the next 6-9 months.

• The total paid-up capital is INR 11.77 lakhs.

• Box8 is open till 1 AM! Get piping hot meals delivered in under 38 mins with

no delivery charges.

• Highly efficient frameworks and IT tools are implemented for seamless

customer service

• 90+ delivery stores across 4 cities –Bangalore, Gurgaon, Mumbai & Pune.

• Top notch founding and leadership team from IITs/IIMs with previous work

experience in top investment banks, consulting firms & product companies.

Dayananda Sagar University, Bangalore

◢ Internship at Box8 ◤ 4

CHAPTER 3: JOB DESCRIPTION

→ Profile: Software Development Engineer Intern

→ Division: Backend

→ Team: Payments Integration Team

→ Responsibilities:

 → Monitor Payment Transactions

 → Integrate Payment Gateways

 → Bug Fixes

 → API Integrations

 → Testing for APIs

Dayananda Sagar University, Bangalore

◢ Internship at Box8 ◤ 5

CHAPTER 4: SYSTEM REQUIREMENTS

The 4 requirements for full functionality of the environment is as under:

4.1. Functional Requirements:

• The database must be active and should fetch data seamlessly

• The third party servers should provide response data as defined in

 their documentation.

• Customer should be able to access Box8 and Mojo Pizza at all times.

• Latency should be handled.

4.2. Non functional Requirements:

• There should be a load balancer working when services are being

 deployed.

• The code should be easy to understand and should have readability.

• Graphical representation of data on Kibana must be configured.

• Redash queries should be dependable and reliable

4.3. Software Requirements:

• Frontend: HTML5, CSS, JavaScript, JQuery, AngularJS, Android Studio

 and Node

• Backend: Ruby on Rails, Rspec, PostgreSQL

• Server: nginx server using AWS

• Search Engine: Elasticsearch

• Cache control, Intermediate Storage and Queues: Redis

4.4. Hardware Requirements:

• RAM: 8GB

• Processor: Intel i5 or better

• Storage: 100GB or more

Dayananda Sagar University, Bangalore

◢ Internship at Box8 ◤ 6

CHAPTER 5: LITERATURE REVIEW

Box8 API is the name given to the backend service used to build Box8 and MOJO Pizza

client services.

Backend Services Environment

5.1. Ruby on Rails:

Box8 API is built on Ruby on Rails. Ruby on Rails is a server-side web

application framework which is written in Ruby language. It follows a Model View

Controller (MVC) Architecture. It is an easy to use framework and has inbuilt features

for scaffolding default structures of a database, web service and web pages. Ruby on

Rails is a widely popular framework with the least number of drawbacks, currently

available for use.

Ruby on Rails emphasizes more on Convention over Configuration (CoC), Don’t

Repeat Yourself (DRY) and the infamous Active Record pattern.

Version used:

• Ruby: v2.4.2

• Rails: v5.0.4

• Bundler: v1.16.2

5.2. Rspec:

 Box8 API undergoes thorough Integration Testing, Unit Testing, Black Box

Testing, White Box Testing, User Acceptance Testing, Full stack testing and finally

Sanity Testing.

 RSpec is a Domain Specific Language (DSL) testing tool written in Ruby for the

purpose of testing code written in Ruby. It is a behavior-driven development (BDD)

framework which is widely used in production applications.

The key idea behind RSpec testing is that of Test Driven Development (TDD)

where the tests are initially written and later on, the development of the code is done

based on writing just enough code that will fulfill those tests followed by continuous

code refactoring, reviews and deployments.

Dayananda Sagar University, Bangalore

◢ Internship at Box8 ◤ 7

It has its own mocking framework that is completely integrated into the

framework based upon a concept called JMock. The simplicity and ease of use in the

RSpec syntax makes it one of the most popular and widely used testing tool for Ruby

applications. It has 3 main blocks describe, context and it. RSpec is also having

fixtures and factories which help create test data and seed test database during test

run time.

Version used:

• Rspec: v3.7

- Rspec-core: v3.7.0

- Rspec-expectations: v3.7.0

- Rspec-mocks: v3.7.0

- Rspec-rails: v3.7.1

- Rspec-support: v3.7.0

5.3. PostgreSQL:

The database on which the storage is done is Postgres, also known as

PostgreSQL. It is a very powerful, free and open source relational database

management system which boasts about the great care taken for extensibility,

elasticity, feasibility and technical standards compliance. Postgres runs on all major

operating systems and it is ACID compliant.

Version used: v10

5.4. Kibana:

Kibana is a data visualization tool which is used for various purposes. Data that

is logged can be monitored, analyzed and based on the data, various predictions and

recommendations are achieved. It is a plug in for elastic search for content that is

indexed in an elastic cluster.

Elastic Stack or ELK is the combination of the tools used for data analytics and

data engineering. Kibana has file beats and each file beat stores records related to

the particular month.

Version: 7.1.1

Dayananda Sagar University, Bangalore

◢ Internship at Box8 ◤ 8

5.5. Redis:

 Redis is an open source (BSD licensed), in-memory data structure store, and is

a key-value database with optional durability to store cache and message broker. It

supports data structures such as strings, hashes, lists, sets, sorted sets with range

queries, bitmaps, hyperloglogs, geospatial indexes with radius queries and streams.

Redis has built-in replication, Lua scripting, Least Recently Used eviction,

transactions and different levels of on-disk persistence, and provides high availability

via Redis Sentinel and automatic partitioning with Redis Cluster.

Atomic operations can be run on these types, like appending to a string;

incrementing the value in a hash; pushing an element to a list; computing set

intersection, union and difference; or getting the member with highest ranking in a

sorted set.

In order to achieve its outstanding performance, Redis works with an in-

memory dataset. Depending on the use case, the dataset can be dumped to disk

every once in a while, or each command can be logged. Persistence can be optionally

disabled, if you just need a feature-rich, networked, in-memory cache.

Redis also supports trivial-to-setup master-slave asynchronous replication,

with very fast non-blocking first synchronization, auto-reconnection with partial

resynchronization on net split.

Other features include:

• Transactions

• Pub/Sub

• Lua scripting

• Keys with a limited time-to-live

• LRU eviction of keys

• Automatic failover

Redis is written in ANSI C and works in most POSIX systems like Linux, *BSD,

OS X without external dependencies.

Version used:

• Redis-cli: v4.0.9

Dayananda Sagar University, Bangalore

◢ Internship at Box8 ◤ 9

5.6. Redash:

 Redash is an open source tool built for developers to query, visualize and

collaborate data stored in their database. Redash is very quick to setup and works

almost with any type of data source based on the requirement so as to query from

anywhere in no time.

Once done, results can be shared along with the dashboards to the other team

members and help the whole organization to be data driven with no-code filters and

parameters that instantly adjust. Alerts can be sent for pre-defined triggers to email,

Slack, or Hipchat (A custom webhook can be set up, as well).

Redash is our take on freeing the data within our company in a way that will

better fit our culture and usage patterns. We tried to use traditional BI suites and

discovered a set of bloated, technically challenged and slow tools/flows. What we

were looking for was a more hacker’ish way to look at data, so we built one.

Python is integrated into redash which can help data processing by using

elastic search. Python can be used for data mining and its applications. Alert systems

can also be setup using python where a daily mailer is implemented that generates

payment transaction success reports for the previous day’s transactions sorted by

the gateways.

Redash was built to achieve fast and easy access to billions and billions of

records, that redash collects through Amazon Redshift (“petabyte scale data

warehouse” that “speaks” PostgreSQL). As of recent times, Redash has support for

querying multiple databases, including: Redshift, Google BigQuery, Google

Spreadsheets, PostgreSQL, MySQL, Graphite, Axibase Time Series Database and

custom scripts.

 Version used:

• Redash: v7.0.0

5.7. GitLab:

 Gitlab is a tool used for Version Control. It is a web based DevOps tool that

provides a repository manager for project planning, collaboration, issue fixes, time

management, micro coding and integration. GitLab is a single application for the

entire software development lifecycle. From project planning and source code

Dayananda Sagar University, Bangalore

◢ Internship at Box8 ◤ 10

management to CI/CD, monitoring, and security. GitLab enables teams to

collaborate and work from a single conversation, instead of managing multiple

threads across disparate tools. GitLab provides teams a single data store, one user

interface, and one permission model across the DevOps lifecycle allowing teams to

collaborate, significantly reducing cycle time and focus exclusively on building great

software quickly.

 Version used:

• Gitlab: v11.11

5.8. Sidekiq:

 Sidekiq is a simple, open source, job schedule for background job processing

in Ruby. Sidekiq does not do the scheduling, but it does the job processing. FIFO

(First In First Out) methodology is implemented by Sidekiq. It takes in the job queue

which is stored in redis and executes them. Sidekiq uses threads to handle multiple

jobs at the same time occurring in the same process.

 Scheduling can be added to sidekiq using cron. Cron is used to schedule

commands at a specific time. These scheduled commands or tasks are known as

“Cron Jobs”

 Syntax of cron:

• Minute(0-59) Hour(0-24) Day_of_month(1-31) Month(1-12)

Day_of_week(0-6) Command_to_execute

 Example of cron:

• For 22:00 on every day-of-week from Monday through Friday

• 0 22 * * 1-5

 Version used:

• V4.0.0

Dayananda Sagar University, Bangalore

◢ Internship at Box8 ◤ 11

CHAPTER 6: REFUND STATUS CHECK

6.1. Objective:

 The objective of implementing this is to enable a manual way to check for the

status of a refund initiated by a customer by calling up the customer care of

Box8/MOJOPizza. Sometimes the bank may take upto 2 or 3 days to complete a

refund. To get an insight in the meanwhile, a refund status check is to be done.

6.2. Procedure:

 The procedure follows a linear approach where the refund is mapped

through the customer details which is acquired when the customer provides their

phone number to the customer care executive.

1. check refund status button is clicked at POS

2. it routes to get_refund_staus function and sends refund_id as a

parameter

3. The refund_id is used to identify the transaction

4. the transaction_status controller gets the refund details using

get_refund_details function.

5. The details are received from the bank server

6. order_refund creates an object

7. Based on the gateway, a call is made to the respective check_refund for

the gateway from refund_transaction_status module.

8. Once the response is received from the gateway, corresponding json is

rendered.

9. If the gateway supports refund_check, status code is assigned as below.

• Status code : 200 “approved”

• Status code : 404 “rejected”

• Status code : 422 “pending”

10. The same is updated in the database for the corresponding transaction

11. Details are updated in the POS and the customer gets the required

information

12. RSpec Tests are written and all cases are tested.

Dayananda Sagar University, Bangalore

◢ Internship at Box8 ◤ 12

6.3. Flowchart:

Fig 6.1: Refund Status Check Flowchart

6.4. Inputs:

• Customer’s Phone Number: given by the customer

• Payment Transaction ID: fetched using the customer’s phone number

• Refund ID: fetched using Payment Transaction ID

Dayananda Sagar University, Bangalore

◢ Internship at Box8 ◤ 13

6.5. Outputs:

Fig 6.2: Refund Status Check Output

Dayananda Sagar University, Bangalore

◢ Internship at Box8 ◤ 14

Fig 6.3: Refund Status Check Output

Dayananda Sagar University, Bangalore

◢ Internship at Box8 ◤ 15

CHAPTER 7: REFUND INTEGRITY WORKER

7.1. Objective:

 The objective of this worker is to automate things. As the worker runs

asynchronously by itself, at the time specified by the cron job, no one has to manually

run it. It is capable of handling refunds in bulk amount.

7.2. Procedure:

1. Every morning at 4 a.m. IST, the Sidekiq worker starts its execution.

2. Its first job is to determine and fetch all the pending transactions from the

previous day to 3 days ago.

3. Once fetched, the transactions are executed in a batch of hundred until

exhausted.

4. The next step is to obtain and select the refund from current batch. Further

processes are repeated for each refund transaction.

5. Once the refund transaction is selected from the batch, the next task is to get

the corresponding payment transaction for the refund.

6. The corresponding gateway name and Refund ID is logged.

7. In the next step, we make a call to the gateway.

8. Next the extraction of the refund status is done from the gateway by Faraday

HTTP Request.

9. After the extraction of the refund status, it is categorized based on the

response from the payload into the following four categories, namely

• Pending (step 10)

• Failed (step 13)

• Gateway Timeout (step 14)

• Success(step 15)

10. In case of a pending refund status, the refund transaction and worker state

details are logged.

11. Then it is checked if the return request is older than two days, if so job is

enqueues to emailer_queue and transaction details are sent to the tech team

as an email.

12. After that the refund id and state is added to the refund_statuses array.

13. In case of failed transaction status, the refund status is updated to failed and

refund id and state is added to the refund_statuses array.

Dayananda Sagar University, Bangalore

◢ Internship at Box8 ◤ 16

14. In case of gateway time-out refund status, the refund status is updated to

gateway_timeout and refund id and state is added to the refund_statuses

array.

15. In case of success transaction status, the refund status is updated to success

and checked if the payment has box8 wallet money.

16. If yes, then a refund is created for the corresponding amount of box8 wallet

money and the respective refund id and state is added to the refund_statuses

array else the refund id and state is directly added to the refund_statuses

array.

17. After the updation in the refund_statuses array the next refund transaction is

selected and the same steps are followed until all batches are exhausted.

18. RSpec Tests are written and all cases are tested.

7.3. Input:

 All inputs are automatically fetched by querying to the database for refund

transactions whose status is pending.

Dayananda Sagar University, Bangalore

◢ Internship at Box8 ◤ 17

7.4. Flowchart:

Fig 7.1: REFUND INTEGRITY WORKER FLOWCHART

Dayananda Sagar University, Bangalore

◢ Internship at Box8 ◤ 18

7.5. Output:

Fig 7.2

Dayananda Sagar University, Bangalore

◢ Internship at Box8 ◤ 19

CHAPTER 8: GOOGLE PAY INTEGRATION

8.1. Objective:

 The objective of implementing Google Pay is to provide customers to use

Google Pay for making their payments for their Box8 and MOJOPizza orders. Google

Pay is a convenient and highly used payment platform so this will help customers to

checkout their orders easily.

8.2. APIs:

The following list consist of the APIs implemented in the Google Pay

controller:

1. inititate_collect

2. callback

3. check_status

4. initiate_intent

8.3. Process (along with inputs and response):

The flow consists of 2 phases :
1. Initiate phase
2. Validate phase

Step 1: Initiate Phase:

i) Initiate collect phase :
• Customer clicks ‘pay using Google Pay’ button.

• Pop-up shown with pre-populated Customer’s mobile number with

 option to edit.

• Payment transaction is created for the Customer.

• Transaction details are generated and stored.

• OAuth Credential is generated for the current transaction.

• Payload sent to Google Pay API’s link, as provided and instructed by

 Google

• Status response is received and appropriate json is rendered.

Dayananda Sagar University, Bangalore

◢ Internship at Box8 ◤ 20

API : initiate_collect

Method : POST

Params : {
 header: session-id (string),
 body:
 'currency_redeem' (boolean),
 'payment_option_id' (integer),
 'address_id' (integer),
 'remark' (string),
 'outlet_service_type' (string),
 'order_time' (long integer),
 'cash_order_id' (integer),
 ‘client_phone_number’ (string)
 }
URI : /gpay/initiate_collect

• Possible outcomes : The response contains any of the following

possible
 values for the transactionStatus object.

• 200 : All OK

• 400 : Request contains invalid Phone Number or wrong

parameters

• 404 : Account linked to Phone number was not found

• 409: Duplicate transaction

Sample success response

{
 "Data": {
 "merchantTxnId": " BX81088888888888857451",
 "Time_to_live":"185"

 },
 "meta": {
 “code”: 200 ,
 “status”: " OK" ,
 “message”: "All OK!" ,
 “error”: false ,
 “version”: "1.0" ,
 "copyright": "Copyright 2015 Box8"

 }
}

Dayananda Sagar University, Bangalore

◢ Internship at Box8 ◤ 21

Sample invalid phone number response

{
 "data": {
 "merchantTxnId": " BX81088888888888857451",
 "time_to_live": "185"

 },
 "meta": {
 "code": 400,
 "status": "Not OK",
 "message": "Request contains invalid Phone Number or wrong parameters",
 "error": true,
 "version": "1.0",
 "copyright": "Copyright 2015 Box8"

 }
}

Sample account not found response

{
 "data": {
 "merchantTxnId": " BX81088888888888857451",
 "time_to_live": "185"

 },
 "meta": {
 "code": 400,
 "status": "Not OK",
 "message": "Account linked to Phone number was not found",
 "error": true,
 "version": "1.0",
 "copyright": "Copyright 2015 Box8"

 }
}

Dayananda Sagar University, Bangalore

◢ Internship at Box8 ◤ 22

Sample duplicate transaction response

{
 "Data": {
 "merchantTxnId": "BX8106568115518798586179",
 "Time_to_live":"185"

 },
 "meta": {
 “code”: 4009 ,
 “status”: "Not OK" ,
 “message”: "Duplicate Transaction" ,
 “error”: true ,
 “version”: "1.0" ,
 "copyright": "Copyright 2015 Box8"

 }
}

ii). Initiate intent phase :
• Check for device compatibility (isReadyToPay) & whether the device is
• android only

• If both the response is true, initiate using intent flow, else collect flow

API : initiate_intent

Method : POST

Params : {
 header: session-id (string),
 body:
 'currency_redeem' (boolean),
 'payment_option_id' (integer),
 'address_id' (integer),
 'remark' (string),
 'outlet_service_type' (string),
 'order_time' (long integer),
 'cash_order_id' (integer),
 }
URI : /gpay/initiate_intent

Dayananda Sagar University, Bangalore

◢ Internship at Box8 ◤ 23

Sample response for initiate intent

{
 "data": {
 pay_details = {
 "apiVersion" : 2,
 "apiVersionMinor" : 0,
 "allowedPaymentMethods" : [
 {
 "type" : "UPI",
 "params" : {
 "payeeVpa": box8vpa @axisbank ,
 "payeeName": Box8,
 "mcc": "5812" ,
 "transactionReferenceId": BX81088888888888857451, }
 "tokenizationSpecification" : {
 "type" : "DIRECT"

 }
 }],
 "transactionInfo" : {
 "totalPriceStatus" : "FINAL",
 "totalPrice" : "100",
 "currencyCode" : "INR",
 "transactionNote" : "Payment for your Box8 order
 with Transaction ID BX81088888888888857451",
 }
 }
 },
 "meta": {
 “code”: 200 ,
 “status”: "OK" ,
 “message”: "Intent Pay Params Generated" ,
 “error”: false ,
 “version”: "1.0" ,
 "copyright": "Copyright 2015 Box8"

 }
}

Dayananda Sagar University, Bangalore

◢ Internship at Box8 ◤ 24

Sample not android transaction response

{
 "data": [],
 "meta": {
 “code”: 400 ,
 “status”: "Not OK" ,
 “message”: "Try Collect flow" ,
 “error”: true ,
 “version”: "1.0" ,
 "copyright": "Copyright 2015 Box8"

 }
}

Step 2: Validate phase:
• Polling starts after 30s of Google API call, with an interval of 5s

between each request in case where there no callback received.

Collect Flow

API : check_status

Method : POST

Params : { header: session-id (string),
 body: ‘merchantTxnId’(string)
 }
URI : /gpay/check_status

Intent Flow

API : check_status

Method : POST

Params : { header: session-id (string),
 body: ‘merchantTxnId’(string),
 ‘flow_type’ (string),
 ‘reference_id’ (string)
 }
URI : /gpay/check_status

Dayananda Sagar University, Bangalore

◢ Internship at Box8 ◤ 25

 Possible outcomes : The response contains any of the following possible

 values for the transactionStatus object.

• SUCCESS

• FAILURE: Transaction has failed

• IN_PROGRESS: Transaction is in progress

• PAYMENT_NOT_INITIATED: Payment hasn't been initiated by the user

• DECLINED: Payment has been declined by the user

• EXPIRED: Payment request expired

• DOES NOT EXIST

If box8 server got the callback from axis server, it checks the status of the

payment transaction from database and sends the response to box8 client.

Otherwise it makes another api call to axis server for checking status of

transaction and then responds back to t he client.

Sample Successful transaction response

{
 "data": {
 "error": false,
 "merchantTxnId": " BX81088888888888857451",
 "amount": "4.0",
 "msg": "Payment Successful. Order Created.",
 "status": "SUCCESS",
 "transaction_successful": true

 },
 "callback_success": true,
 "meta": {
 "code": 200,
 "status": "OK",
 "message": "Payment Successful. Order Created.",
 "error": false,
 "version": "1.0",
 "copyright": "Copyright 2015 Box8"

 }
}

Dayananda Sagar University, Bangalore

◢ Internship at Box8 ◤ 26

Sample Payment Declined response

{
 "data": {
 "error": true,
 "merchantTxnId": " BX81088888888888857451",
 "amount": 99,
 "msg": "Payment failure",
 "status": "DECLINED",
 "transaction_successful": false

 },
 "callback_success": true,
 "meta": {
 "code": 400,
 "status": "Not OK",
 "message": "Payment failed",
 "error": true,
 "version": "1.0",
 "copyright": "Copyright 2015 Box8"

 }
}

Sample Payment not found response

{
 "data": {
 "error": true,
 "merchantTxnId": " BX81088888888888857451",
 "amount": 0,
 "msg": "Payment failure",
 "status": "NOT_FOUND",
 "transaction_successful": false

 },
 "callback_success": true,
 "meta": {
 "code": 400,
 "status": "Not OK",
 "message": "Payment failed",
 "error": true,
 "version": "1.0",
 "copyright": "Copyright 2015 Box8"

 }
}

Dayananda Sagar University, Bangalore

◢ Internship at Box8 ◤ 27

Sample Payment pending response

{
 "data": [],
 "callback_success": false,
 "meta": {
 "code": 400,
 "status": "Not OK",
 "message": "Payment pending",
 "error": true,
 "version": "1.0",
 "copyright": "Copyright 2015 Box8"

 }
}

Sample expired state response

{
 "data": {
 "error": true,
 "merchantTxnId": " BX81088888888888857451",
 "amount": 99,
 "msg": "Payment failure",
 "status": "EXPIRED",
 "transaction_successful": false

 },
 "callback_success": true,
 "meta": {
 "code": 400,
 "status": "Not OK",
 "message": "Payment failed",
 "error": true,
 "version": "1.0",
 "copyright": "Copyright 2015 Box8"

 }
}

Dayananda Sagar University, Bangalore

◢ Internship at Box8 ◤ 28

 Sample transaction does not exist response

{
 "data": {
 "error": true,
 "msg": "Transaction does not exist",
 "transaction_successful": false

 },
 "meta": {
 "code": 409,
 "status": "Not OK",
 "message": "Transaction does not exist",
 "error": true,
 "body": null,
 "version": "1.0",
 "copyright": "Copyright 2015 Box8"

 }
}

 Sample for any other (invalid) response

{
 "data": [],
 "callback_success": true,
 "meta": {
 "code": 409,
 "status": "Not OK",
 "message": "Unknown State.",
 "error": true,
 "body": null,
 "version": "1.0",
 "copyright": "Copyright 2015 Box8"

 }
}

Dayananda Sagar University, Bangalore

◢ Internship at Box8 ◤ 29

• Axis server sends a callback to box8 server regarding the status of

transaction.

• Order is created on the basis of callback also. Basically, it’s a race

condition between check status api and callback api, whichever gets

the information about transaction success state first, makes the

order.

• Axis sends aes encrypted payload for every transaction on box8

server. Payload is decrypted with aes key provided by axis and the

checksum is matched with rsa private key (public key is provided to

axis by us for checksum encryption). Order is created (if not already)

on the basis of payment status.

• Box8 client gets the payment status and it can either continue to

poll (payment status pending) or redirect to cart (in case of web) /

payment page(in case of app) for failed payment or stop polling

(transaction success). Order will be created in transaction success

case.

• RSpec Tests are written and all cases are tested.

Response in order successfully created

{
 "data": {
 "error": false ,
 "merchantTxnId": "BX8106555015353576757451" ,
 "amount": "1.0" ,
 "msg": "Payment Successful. Order Created." ,
 "status": "SUCCESS" ,
 },
 "transaction_successful": true
 "meta": {
 "code": 200 ,
 "status": "OK" ,
 "message": "Payment Successful. Order Created." ,
 "error": false ,
 "version": "1.0" ,
 "copyright": "Copyright 2015 Box8"
 }
}

Dayananda Sagar University, Bangalore

◢ Internship at Box8 ◤ 30

Response in case of payment success but item gets sold out after payment

{
 "data": {
 "error": true ,
 "merchantTxnId": "BX8106555015353576757451" ,
 "amount": "1.0" ,
 "msg": "Payment Successful, order couldn't be processed" ,
 "status": "FAILED" ,
 "transaction_successful": true
 },
 "meta": {
 "code": 200 ,
 "status": "OK" ,
 "message": "Payment Successful, order couldn't be processed" ,
 "error": false ,
 "version": "1.0" ,
 "copyright": "Copyright 2015 Box8"
 }
}

Response in amount mismatch

{
 "data": {
 "error": true ,
 "merchantTxnId": "BX8106555015353576757451" ,
 "amount": "1.0" ,
 "msg": "Payment Successful, order couldn't be processed" ,
 "status": "FAILED" ,
 "transaction_successful": true
 },
 "meta": {
 "code": 200 ,
 "status": "OK" ,
 "message": "Payment Successful, order couldn't be processed" ,
 "error": false ,
 "version": "1.0" ,
 "copyright": "Copyright 2015 Box8"
 }
}

Dayananda Sagar University, Bangalore

◢ Internship at Box8 ◤ 31

8.4. Flowchart:

 COLLECT FLOW

Fig 8.1: Google Pay Collect Flowchart

Dayananda Sagar University, Bangalore

◢ Internship at Box8 ◤ 32

INTENT FLOW

Fig 8.2: Google Pay Intent Flowchart

Dayananda Sagar University, Bangalore

◢ Internship at Box8 ◤ 33

8.5. Output:

INTENT FLOW

Fig 8.3

Dayananda Sagar University, Bangalore

◢ Internship at Box8 ◤ 34

COLLECT FLOW

Fig 8.4

Fig 8.5

Dayananda Sagar University, Bangalore

◢ Internship at Box8 ◤ 35

Fig 8.6 Polling

 Fig 8.7 Fig 8.8 Fig 8.9

Dayananda Sagar University, Bangalore

◢ Internship at Box8 ◤ 36

Fig 8.10

Fig 8.11

Dayananda Sagar University, Bangalore

◢ Internship at Box8 ◤ 37

CHAPTER 9: PHONEPE INAPP INTEGRATION

9.1. Objective:

 InApp is a Merchant's Progressive Web Application present inside PhonePe's

"Apps" section. The objective of this task is to include Box8 into the InApps section of

PhonePe to have its presence and thus compete in the food section of the PhonePe

eco system.

9.2. Procedure:

1. Register Box8 with PhonePe and receive the merchant credentials

2. Install PhonePe JavaScript SDK (JS-SDK) and create PhonePe instance for

the same

3. Process begins when customer selects Box8 from PhonePe InApps

4. JS-SDK invokes Box8 Web App

5. JS-SDK requests customer to get access to the location

6. If customer agrees then location is used to fetch the outlet, else a default

outlet is shown and a manual input for the location is expected.

7. The customer then builds the cart

8. Once the cart is built, the JS-SDK asks the permission to share the

customer’s details with Box8.

9. If the customer denies to share then a manual login is awaited.

10. If customer agrees then a grant token is generated and sent to Box8

Server

11. Box8 server makes an API call to the PhonePe server using the grant

token to fetch an SSO (Single Sign On) Token.

 The result may be a:

• Success

• Timeout

• Wrong Credentials

• Bad Request

12. All the server to server communication are SHA256 encrypted and Base64

encoded.

13. The SSO Token consists of customer’s name and email id in encrypted

form

14. The details are decrypted.

Dayananda Sagar University, Bangalore

◢ Internship at Box8 ◤ 38

15. If the customer is an existing customer, the customer is authenticated

and logged in.

16. If the customer is a new customer, an account is created for the

customer.

17. The unsigned session id then gets signed and the cart is reassigned with

the new session id

18. The customer then needs to make payment. JS-SDK is invoked and it

redirects to the PhonePe payments page.

19. Once the payment is made, JS-SDK redirects back to Box8 and validation

takes place

20. The status of the transaction is fetched and it could be in either of the

states:

• Success

• Pending

• Failed

• Gateway Error

21. Based on the response, appropriate redirection is done.

22. A webhook is also received for these transactions.

23. The webhook is to be decrypted and is helpful where the validation

results in a pending state but the webhook gives a success case.

24. To prevent creation of multiple orders for a single transaction, race

condition check is made.

25. A key is generated and stored in redis using which optimistic locking

approach is implemented.

26. Either the validate call or the webhook call can proceed to making an

order, and not both

27. The order once created, locks the key for that transaction.

Dayananda Sagar University, Bangalore

◢ Internship at Box8 ◤ 39

9.3. Flowchart:

Fig 9.1

Dayananda Sagar University, Bangalore

◢ Internship at Box8 ◤ 40

9.4. Inputs:

• Customer’s location

• Customer’s Name

• Customer’s Phone Number

• Order Details

• Delivery Time

• Merchant ID

• Salt

• JS-SDK

Dayananda Sagar University, Bangalore

◢ Internship at Box8 ◤ 41

9.5. Outputs:

 Fig 9.2 Fig 9.3

Dayananda Sagar University, Bangalore

◢ Internship at Box8 ◤ 42

 Fig 9.4 Fig 9.5

Fig 9.6 Fig 9.7

Dayananda Sagar University, Bangalore

◢ Internship at Box8 ◤ 43

Fig 9.8 Fig 9.9

Fig 9.10

Dayananda Sagar University, Bangalore

◢ Internship at Box8 ◤ 44

CONCLUSION AND FUTURE WORK

 All the expectations and requirements by Box8 was fulfilled in time using top

notch framework and my coding expertise maintaining the benchmark standards.

The internship work has been accepted and is already in the production

environment.

 There is no much room for future work as I have completed end to end

integration. Future work is subject to changes and newer practices that may be

introduced by the payment service providers (PhonePe, Paytm, Axis, PayPal, etc)

Dayananda Sagar University, Bangalore

◢ Internship at Box8 ◤ 45

CHAPTER 11: REFERENCES

11.1. Google Pay APIs for India:

https://developers.google.com/pay/india/api/otherapis/omnichannel

11.2. PhonePe InApp Integration Documentation:

https://developer.phonepe.com/docs/brief-step-by-step-guide

11.3. Gitlab Documentation: https://docs.gitlab.com/ee/README.html

11.4. Redis Documentation: https://redis.io/documentation

11.5. Elastic Search: https://www.elastic.co/guide/index.html

11.6. RSpec Documentation: http://rspec.info/documentation/

11.7. PostgreSQL Documentation:

https://www.postgresql.org/docs/10/index.html

https://developers.google.com/pay/india/api/otherapis/omnichannel
https://developer.phonepe.com/docs/brief-step-by-step-guide
https://docs.gitlab.com/ee/README.html
https://redis.io/documentation
https://www.elastic.co/guide/index.html
http://rspec.info/documentation/
https://www.postgresql.org/docs/10/index.html

Date: 28th May 2019

To Whom It May Concern

We are glad to inform that Mr. Janmejay S Purohit from Dayananda Sagar
University is undergoing internship at Box8 in Payments Team. His tenure of
internship is from 15th January 2019 to 15th July 2019.

During his tenure as Software Development Intern he has worked on various
projects like

• Google Pay Omni Channel Payment Integration
• Refund Status Check from Box8-POS
• Refund Integrity Worker
• PhonePe In-App Integration (On-going)

We found him extremely hard working, dedicated and inquisitive. His
association with us has been very fruitful.

For Poncho Hospitality Pvt. Ltd.(Box8)

Abhishek
Tech Lead, Payments Team
+91-8092200694
abhishek@box8.in

