A PROJECT REPORT ON
INTERNSHIP AT BOX8

A thesis submitted in partial fulfillment of the requirements for the
award of the degree of
Bachelor of Technology
In Computer Science and Engineering

2018 -2019

By
Janmejay S Purohit

DSU15CS0027

Under the guidance of
Dr. Rajesh T.M.
Assistant Professor

;
Q
3
A
6

1
. BAMGALQ

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
DAYANANDA SAGAR UNIVERSITY
Kudlu Gate, Hosur Road, Bangalore - 560068

DAYANANDA SAGAR UNIVERSITY
Kudlu Gate, Hosur Road, Bangalore - 560068

Department of Computer Science and Engineering

BONAFIDE CERTIFICATE

This is to certify that the internship project at Box8 is a bonafide record of the work
done by Janmejay S Purohit (DSU15CS0027) in partial fulfillment of the requirements
for the award of the degree of Bachelor of Technology in Computer Science and
Engineering at the DAYANANDA SAGAR UNIVERSITY, BANGALORE, during the year
2018-2019.

Dr. Rajesh T.M.

Guide External Examiner

Dr Bondu Venkat Dr. M KBanga Dr. A Srinivas

Class Advisor Chairman Dean - SoE

ABSTRACT

Payments in the backbone of any product-based company and for the
customers to be happy, there should not be any discrepancies in the customer
assets. It is the main motive of every company to have a structurally strong
framework for payments and payment related proceedings. | have done my
internship at Box8 in the payments team of the backend department. This report will
tell you about the tasks | completed till date at Box8.

With emerging technologies and online payments, usage of various payment
options has become a trend. Box8 wants to provide to its customers the liberty to
use various payment options as available in the market. The duty bestowed to me
was to integrate Google Pay payment gateway which uses the Omni Channel API as
defined by the google developer docs.

With cases of failed transactions or transactions with canceled orders, refunds
usually take 1-2 working days to reflect back in the customer’s initial account used
for payment mode. Since there was an absence of the knowledge about the situation
between the initiation of the request and the completion, | implemented a refund
status check which retrieves the information from the bank.

A worker is a set of code that runs by itself based on the configuration it was
given. A worker was also made which runs by itself at a specified time to retrieve the
status of a refund transaction and updates the same to the database. It runs by itself
and does not need any manual interaction. Logging is done for reference at a point
of time in the future.

Ongoing work right now is the Phone Pe in-App integration. In PhonePe app,
there is a section called Apps. Here, | am having the backend integration part for
Box8 to be a part of PhonePe apps in the food section of Apps in PhonePe. It is a
work in progress and the final implementation will be done soon. Testing is in
progress and the front end collaboration is in process.

ACKNOWLEDGEMENTS

| express my sincere thanks and gratitude to DAYANANDA SAGAR UNIVERSITY
for providing me an opportunity to fulfill my most cherished desire of reaching my
goal and thus helping me to make a bright career.

| am grateful to my project guide Dr. Rajesh T.M., Assistant Professor, Department of
Computer Science and Engineering, DSU, Bangalore, for his valuable guidance,
encouragement and for extending all possible help in timely completion of the
project.

| would also like to express my sincere gratitude to my Class Advisor Dr Bondu
Venkat, Associate Professor, Department of Computer Science & Engineering, DSU,
Bangalore, for his constant support.

| am highly grateful to Dr. M.K Banga, Chairman, Department of Computer Science
and Engineering, DSU, Bangalore, for his kind support, guidance and encouragement
throughout the course of this internship work.

| express my heartfelt thanks to Dr. A Srinivas, Dean at the esteemed
institution DSU Bangalore for providing with all the necessities to complete my
internship.

| would like to thank all the teaching and non-teaching staff of Department of
Computer Science and Engineering for their kind co-operation during the course of
the internship work.

Finally, I am thankful to my parents and friends, who helped me in one way or the
other throughout my project work.

Janmejay S Purohit

DSU15CS0027

DECLARATION

|, Janmejay S Purohit (DSU15CS0027), student of 8th semester B.Tech in Computer
Science and Engineering, Dayananda Sagar University, Bengaluru, hereby declare
that the internship project at Box8 submitted to the Dayananda Sagar University
during the academic year 2018 - 2019, is a record of an original work done by me
under the guidance of my manager Mr. Abhishek at Box8 and Dr. Rajesh T.M.
assistant professor, Department of Computer Science and Engineering, Dayananda
Sagar University, Bengaluru. This project work is submitted in partial fulfillment for
the award of the degree of Bachelor of Technology. The result embodied has not
been submitted to any other university or institute for the award of any degree.

Date: Janmejay S Purohit

Place: Bengaluru (DSU15CS0027)

A Wb

TABLE OF CONTENTS

ABSTRACT .ottt e s s ifi
ACKNOWLEDGEMENT ..ottt iv
DECLARATION ..ottt Vv
INTRODUCTION ..ottt sttt st sre s 1
ABOUT BOXS ...ttt st s sre e 2-3
JOB DESCRIPTION ..ottt sre s 4

SYSTEM REQUIREMENTS

4.1. Functional REQUIFEMENTSccvviriiieiiieceeestet et sae e e e 5
4.2. Non-functional REQUIrEMENLSccccevveverieriinirereneseere e ee s 5
4.3, SOftware REQUIFEMENTSccveviririirieierieieesete et sae s sre s 5
4.4, Hardware REQUIrEMENTScoceviririerienieeteeeeteie et 5

LITERATURE REVIEW

5.1 RUBY ON RAII oottt s 6
5.2, RSPEC ittt ettt et sttt e b e st e s bee s reesanaeeas 6-7
5.3, POSEEIrESQL ..t s 7
5.4, KiDANA ciioiiieiieeeeee e e e 7
5.5, RIS ettt 8
5.6, RSN ettt 9
5.7, GITLAD cotieee e e 9-10
TR T o [(o [OOSR 10

6. REFUND STATUS CHECK

6.1, ODJECLIVE .ottt sa e naes 11
0.2, PIOCEAUI oot e e e e e e e e e e eeeeeeesesssessessssseseeaeaeessessssssssnnnnenneees 11
0.3, FIOWCIAIT oottt e e e e e e e e e ee e e e e s aasaaeeeseeesssessseasnnnseeaeees 12

Vi

6.4.
6.5.

INPULS ettt s s s s e e 12
OULPULS ettt ettt et sb e s s e st s e e sab e san e e 13-14

7. REFUND INTEGRITY WORKER

7.1.
7.2.
7.3.
7.4.
7.5.

ODJECLIVE ..ttt s e 15
PrOCEAUIE ..ottt st s st 15-16
INPULS ettt st st sneeneas 16
FIOWCRNAIT et 17
OULPULS ettt ettt et re e st st e b e sate s sabe e aseenneesaneesnes 18

8. GOOGLE PAY INTEGRATION

8.1.
8.2.
8.3.
8.4.
8.5.

ODJECLIVE ..ttt s st 19
APIS ettt sttt b e et b e te et e nens 19
PrOCESS et e e 19-30
FIOWCRNAIT et 31-32
OULPULS ettt ettt s ae e st sb e st e st e e neesabeesaneesane 33-36

9. PHONEPE INAPP INTEGRATION

0.1, ODJECLIVE .ottt st st s et b e naes 37
0.2, PrOCEAUIE ..ottt e 37-38
0.3, FIOWCRNAIT ettt 39
0.4, INPULS ettt s e st e e be e s bt e bt e s be e s be e sbeesnaeeenraeeas 40
0.5, OULPULS .ottt ettt sttt b e e 41-43
10. CONCLUSION AND FUTURE WORKooiiiiiiiriteneieeciiee et ssre e sireeesnveessavee s 44
1T REFERENCES ...ttt ettt ettt sttt ettt s 45

Vii

No.
Fig 6.1
Fig 6.2
Fig 6.3
Fig 7.1
Fig7.2
Fig 8.1
Fig 8.2
Fig 8.3
Fig 8.4
Fig 8.5
Fig 8.6
Fig 8.7
Fig 8.8
Fig 8.9
Fig 8.10
Fig 8.11
Fig 9.1
Fig 9.2
Fig 9.3
Fig 9.4
Fig 9.5
Fig 9.6
Fig 9.7

TABLE OF FIGURES

Name. Page.
Refund Status Check Flowchartcccccvveviveneninenincnecceeene, 12
Refund Status Check OULPULccecvrieinenenererieeieeeeeeeeins 13
Refund Status Check OULPULccoveviivienenieeeeieeseee e 14
Refund Integrity Worker Flowchartccccoeevievinenienienicniennn, 17
Refund Integrity Worker OUtpULtcccceevveveneevenececeeseeceeen 18
Google Pay Collect FIowchartcccoceveevieneneniiinenieeneceeeeens 31
Google Pay Collect FIowchartcccoceveeieneneniinenieieneceeieens 32
Google Pay INtent OULPUL ..coveveeveereeeeeereneeiesee et 33
Google Pay Collect Output - Build Cartccccevveveevercieneneerienieenenn 34
Google Pay Collect Output - POIlING ..ccoveveeieiiiicieienceiereeeenee, 34
Google Pay Collect Output - POIlING .ccccovveveeieiiiieeenceieseeeen 35
Googl e Pay Collect Output - Payment Processc.ccoceeevveunenee. 35
Google Pay Collect Output - Payment Processcccevevveveeneenens 35
Google Pay Collect Output - Payment Processcccccevvevvvervenene 35
Google Pay Collect Output - Payment Processcccocevveveevenene 36
Google Pay Collect Output - Order Creationccccevevveevrerennenn 36
PhonePe FIOWChArtcoveeveiieeeeeeee e 39
PhonePe Output - Select APPS ...coeverieniinierieneseeieseeee et 41
PhonePe Output - Open BOX8cccecvererineneninereenesieneeeeeenes 41
PhonePe Output - Build Cartccecveieveneeiiseseeeseceeeeeeie 42
PhonePe Output - Request for detailsccccocevveevenecveecienieeeenenn, 42
PhonePe Output - Verify Customer Namecccocevevereneneeennenn 42
PhonePe Output - Select ADAresscccooeveveveneneneneneneeneneeen 42

viii

Fig 9.8
Fig 9.9
Fig 9.10

PhonePe Output - Payment Method

PhonePe Output - Payment Process

PhonePe Output - Order Creation ...

CHAPTER 1: INTRODUCTION

This report is a summary of my internship program at Box8 which was from 15t
January 2019 to 15™ June 2019 at Box8. My main duties included integration of
payment gateways, bug fixes, server to server communication and payment
transaction proceedings. During the course of the internship | worked on Ruby on
Rails.

A payment gateway is a merchant service provided by any e-commerce application
service provider for online payments. It authorizes credit card, debit card or direct
payments processing for e-businesses, bricks and clicks, online retailers, or
traditional brick and mortar. The payment gateway is given to the merchant by a
bank, however, it can be provided by a specialized financial service provider as a
separate service, such as a payment service provider.

A payment gateway helps make a payment transaction by the transfer of information
between a payment portal (here, Box8) and the processor or the bank.

Other than integration of payment gateways, the tasks given to me were various bug
fixes and server to server communication.

A refund status worker fetches the previous transactions batch-wise and logs the
transactions and their refund state by making API calls to the bank server as listed in
the payment gateway details of the details stored related to the transaction in our
database. It also takes care of any promotions applied at the time of payment
example given the Box8 money and updates the status in the refund details table.

Another segment was the refund checker, that assigns the status code to the refund
transaction and determines its state whether the transaction is pending, approved
or rejected by making server to server API calls.

There were many obstacles that came during the work, but with the help of my
mentors | was able to solve them and deliver working modules.

CHAPTER 2: ABOUT BOX8

Box8 is a Mumbai-based on-demand food delivery company that managed to turn
heads in a small amount of time. Founded by two IIT graduates Anshul Gupta & Amit
Raj, BOX8 was started as a small outlet in a corporate cafeteria. As Box8 shares the
guote “The idea was to serve Irresistible Desi Meals in a convenient, easy-to-carry
box”.

Today, the company serves over 22,000+ meals every day across its 100+ outlets in
Mumbai, Pune, Bangalore & Gurgaon!

It began as Poncho in 2011 serving just Mexican dishes in the quick service format,
the company expanded its menu and rebranded (to Box8) in July 2012.

The co-founders Amit Raj and Anshul Gupta, both IIT alumni aimed to make their
company the go to option for everyone who wanted to order great tasting food. Box8
is at present in Mumbai, Bangalore and Gurugram and has more than a hundred
outlets over the cities. With more than 22,000 transactions for each day, Box8 has
become 10x over the most recent years.

MOJO Pizza specializes in awesome Pizzas with presence at around 50+ different
locations in Mumbai, Bangalore & Pune. The IT infrastructure is the same for both
Box8 and MQJO Pizza. MOJO Pizza delivers delicious, wide range of pizzas.

Great care is taken to bifurcate the vegetarian and non-vegetarian racks at the
kitchens and quality assessment is considered to be its top priority. Each outlet has
an outlet manager who administers the total working and co-ordination of the outlet
with respect to the delivery boys, customer care, order intake, refunds and complete
administration.

Highly talented and motivated developers are hand picked from various IITs, NITs
and top-notch universities across various cities of India and with the help of their
ability, the technology at Box8 is top notch.

The outlets for both Box8 and MOJO Pizza are the same and are spread across
Mumbai, Pune, Bangalore & Gurgaon.

The organization's strong attention towards taste, innovation and development has
reverberated well with customers, as 80% of its day by day exchanges come from

rehash clients. Reasonable estimating, famous sustenance decisions and Indian
cooking has reverberated well with its young urban client base.

Poncho Hospitality Private Limited is popularly known as Box8. The registered office
of the company is at No.117, 27th Main, HRS Layout 2nd Sector, (Agara) Extension,
Bangalore, Bangalore, Karnataka. MOJOPizza and Box8 are both brands under
Poncho Hospitality Private Limited.

Below are some exciting facts about Box8:

Rapid growth (10X) in last couple of years - selling 7 lakh+ meals per month.
Well-Funded by ace venture funds like Mayfield, IIFL & IAN.

Already profitable - poised to grow multi-fold in the coming quarters.

Huge opportunity to emerge as a leader in this rapidly growing industry, a
large part of which is still unorganized.

Set to expand to 3 new cities over the next 6-9 months.

The total paid-up capital is INR 11.77 lakhs.

Box8 is open till 1 AM! Get piping hot meals delivered in under 38 mins with
no delivery charges.

Highly efficient frameworks and IT tools are implemented for seamless
customer service

90+ delivery stores across 4 cities -Bangalore, Gurgaon, Mumbai & Pune.

Top notch founding and leadership team from I[ITs/IIMs with previous work
experience in top investment banks, consulting firms & product companies.

CHAPTER 3: JOB DESCRIPTION

— Profile: Software Development Engineer Intern
— Division: Backend
—> Team: Payments Integration Team

— Responsibilities:
— Monitor Payment Transactions
— Integrate Payment Gateways
— Bug Fixes
— APl Integrations

— Testing for APIs

CHAPTER 4: SYSTEM REQUIREMENTS

The 4 requirements for full functionality of the environment is as under:

4.1.

4.2.

4.3.

4.4.

Functional Requirements:

The database must be active and should fetch data seamlessly

The third party servers should provide response data as defined in
their documentation.

Customer should be able to access Box8 and Mojo Pizza at all times.
Latency should be handled.

Non functional Requirements:

There should be a load balancer working when services are being
deployed.

The code should be easy to understand and should have readability.
Graphical representation of data on Kibana must be configured.
Redash queries should be dependable and reliable

Software Requirements:

Frontend: HTMLS5, CSS, JavaScript, JQuery, Angular]S, Android Studio
and Node

Backend: Ruby on Rails, Rspec, PostgreSQL

Server: nginx server using AWS

Search Engine: Elasticsearch

Cache control, Intermediate Storage and Queues: Redis

Hardware Requirements:

RAM: 8GB
Processor: Intel i5 or better
Storage: 100GB or more

CHAPTER 5: LITERATURE REVIEW

Box8 APl is the name given to the backend service used to build Box8 and MOJO Pizza
client services.

Backend Services Environment
5.1. Ruby on Rails:

Box8 API is built on Ruby on Rails. Ruby on Rails is a server-side web
application framework which is written in Ruby language. It follows a Model View
Controller (MVC) Architecture. It is an easy to use framework and has inbuilt features
for scaffolding default structures of a database, web service and web pages. Ruby on
Rails is a widely popular framework with the least number of drawbacks, currently
available for use.

Ruby on Rails emphasizes more on Convention over Configuration (CoC), Don't
Repeat Yourself (DRY) and the infamous Active Record pattern.

Version used:

e Ruby:v2.4.2
e Rails:v5.0.4
e Bundler:v1.16.2

5.2. Rspec:

Box8 APl undergoes thorough Integration Testing, Unit Testing, Black Box
Testing, White Box Testing, User Acceptance Testing, Full stack testing and finally
Sanity Testing.

RSpec is a Domain Specific Language (DSL) testing tool written in Ruby for the
purpose of testing code written in Ruby. It is a behavior-driven development (BDD)
framework which is widely used in production applications.

The key idea behind RSpec testing is that of Test Driven Development (TDD)
where the tests are initially written and later on, the development of the code is done
based on writing just enough code that will fulfill those tests followed by continuous
code refactoring, reviews and deployments.

It has its own mocking framework that is completely integrated into the
framework based upon a concept called JMock. The simplicity and ease of use in the
RSpec syntax makes it one of the most popular and widely used testing tool for Ruby
applications. It has 3 main blocks describe, context and it. RSpec is also having
fixtures and factories which help create test data and seed test database during test
run time.

Version used:

e Rspec:v3.7
- Rspec-core: v3.7.0
- Rspec-expectations: v3.7.0
- Rspec-mocks: v3.7.0
- Rspec-rails: v3.7.1
- Rspec-support: v3.7.0

5.3. PostgreSQL:

The database on which the storage is done is Postgres, also known as
PostgreSQL. It is a very powerful, free and open source relational database
management system which boasts about the great care taken for extensibility,
elasticity, feasibility and technical standards compliance. Postgres runs on all major
operating systems and it is ACID compliant.

Version used: v10

5.4. Kibana:

Kibana is a data visualization tool which is used for various purposes. Data that
is logged can be monitored, analyzed and based on the data, various predictions and
recommendations are achieved. It is a plug in for elastic search for content that is
indexed in an elastic cluster.

Elastic Stack or ELK is the combination of the tools used for data analytics and
data engineering. Kibana has file beats and each file beat stores records related to
the particular month.

Version: 7.1.1

5.5. Redis:

Redis is an open source (BSD licensed), in-memory data structure store, and is
a key-value database with optional durability to store cache and message broker. It
supports data structures such as strings, hashes, lists, sets, sorted sets with range
queries, bitmaps, hyperloglogs, geospatial indexes with radius queries and streams.

Redis has built-in replication, Lua scripting, Least Recently Used eviction,
transactions and different levels of on-disk persistence, and provides high availability
via Redis Sentinel and automatic partitioning with Redis Cluster.

Atomic operations can be run on these types, like appending to a string;
incrementing the value in a hash; pushing an element to a list; computing set
intersection, union and difference; or getting the member with highest ranking in a
sorted set.

In order to achieve its outstanding performance, Redis works with an in-
memory dataset. Depending on the use case, the dataset can be dumped to disk
every once in a while, or each command can be logged. Persistence can be optionally
disabled, if you just need a feature-rich, networked, in-memory cache.

Redis also supports trivial-to-setup master-slave asynchronous replication,
with very fast non-blocking first synchronization, auto-reconnection with partial
resynchronization on net split.

Other features include:

e Transactions

e Pub/Sub

e Lua scripting

e Keys with a limited time-to-live
e LRU eviction of keys

e Automatic failover

Redis is written in ANSI C and works in most POSIX systems like Linux, *BSD,
OS X without external dependencies.

Version used:

e Redis-cli: v4.0.9

5.6. Redash:

Redash is an open source tool built for developers to query, visualize and
collaborate data stored in their database. Redash is very quick to setup and works
almost with any type of data source based on the requirement so as to query from
anywhere in no time.

Once done, results can be shared along with the dashboards to the other team
members and help the whole organization to be data driven with no-code filters and
parameters that instantly adjust. Alerts can be sent for pre-defined triggers to email,
Slack, or Hipchat (A custom webhook can be set up, as well).

Redash is our take on freeing the data within our company in a way that will
better fit our culture and usage patterns. We tried to use traditional Bl suites and
discovered a set of bloated, technically challenged and slow tools/flows. What we
were looking for was a more hacker’ish way to look at data, so we built one.

Python is integrated into redash which can help data processing by using
elastic search. Python can be used for data mining and its applications. Alert systems
can also be setup using python where a daily mailer is implemented that generates
payment transaction success reports for the previous day’s transactions sorted by
the gateways.

Redash was built to achieve fast and easy access to billions and billions of
records, that redash collects through Amazon Redshift (“petabyte scale data
warehouse” that “speaks” PostgreSQL). As of recent times, Redash has support for
querying multiple databases, including: Redshift, Google BigQuery, Google
Spreadsheets, PostgreSQL, MySQL, Graphite, Axibase Time Series Database and
custom scripts.

Version used:

e Redash:v7.0.0

5.7. GitLab:

Gitlab is a tool used for Version Control. It is a web based DevOps tool that
provides a repository manager for project planning, collaboration, issue fixes, time
management, micro coding and integration. GitLab is a single application for the
entire software development lifecycle. From project planning and source code

management to CI/CD, monitoring, and security. GitLab enables teams to
collaborate and work from a single conversation, instead of managing multiple
threads across disparate tools. GitLab provides teams a single data store, one user
interface, and one permission model across the DevOps lifecycle allowing teams to
collaborate, significantly reducing cycle time and focus exclusively on building great
software quickly.

Version used:
e Gitlab:v11.11
5.8. Sidekiq:

Sidekiq is a simple, open source, job schedule for background job processing
in Ruby. Sidekiq does not do the scheduling, but it does the job processing. FIFO
(First In First Out) methodology is implemented by Sidekiq. It takes in the job queue
which is stored in redis and executes them. Sidekiq uses threads to handle multiple
jobs at the same time occurring in the same process.

Scheduling can be added to sidekig using cron. Cron is used to schedule
commands at a specific time. These scheduled commands or tasks are known as
“Cron Jobs”

Syntax of cron:

e Minute(0-59) Hour(0-24) Day_of_month(1-31) Month(1-12)
Day_of_week(0-6) Command_to_execute

Example of cron:

e For 22:00 on every day-of-week from Monday through Friday
e 0 22 * * 1-5

Version used:

e V4.0.0

10

CHAPTER 6: REFUND STATUS CHECK

6.1. Objective:

The objective of implementing this is to enable a manual way to check for the
status of a refund initiated by a customer by calling up the customer care of
Box8/MQJOPizza. Sometimes the bank may take upto 2 or 3 days to complete a
refund. To get an insight in the meanwhile, a refund status check is to be done.

6.2. Procedure:

The procedure follows a linear approach where the refund is mapped
through the customer details which is acquired when the customer provides their
phone number to the customer care executive.

1. check refund status button is clicked at POS

2. it routes to get_refund_staus function and sends refund_id as a
parameter

3. The refund_id is used to identify the transaction

4, the transaction_status controller gets the refund details using
get_refund_details function.

5. The details are received from the bank server

6. order_refund creates an object

7. Based on the gateway, a call is made to the respective check_refund for
the gateway from refund_transaction_status module.

8. Once the response is received from the gateway, corresponding json is
rendered.

9. If the gateway supports refund_check, status code is assigned as below.

J Status code : 200 “approved”
. Status code : 404 “rejected”
. Status code : 422 “pending”
10. The same is updated in the database for the corresponding transaction
11. Details are updated in the POS and the customer gets the required
information
12. RSpec Tests are written and all cases are tested.

6.3. Flowchart:

routes to .
Click recheck refund get refund staus and transaction_status
status button at POS sends refund id as controller ->
params ' get refund details |
based on the gateway, call the create array of | Cronto
respective check refund call for gateways which e roRmb
the gateway from support bi
| refund transaction status module | ‘refund check calls _» object
response is received render json
from the gateway correspondingly

v z ' v v v

if gateway | status code : 402 | i | | status code : 403
supports "Check gateway ’ ‘ stz:t;llgtcggsn.d%ml ‘ "Parameters
refund check g dashboard" Missing"

v v
I

status code : 404
"rejected"

status code : 422

status code : 200
"pending”

"approved"

Fig 6.1: Refund Status Check Flowchart
6.4. Inputs:

e Customer’'s Phone Number: given by the customer
e Payment Transaction ID: fetched using the customer’s phone number
e Refund ID: fetched using Payment Transaction ID

gxog
099/00€£08
wod|rews@nyoindsielawuel

nyoung Aelswuer

1BW0YSND MOYS

spunjay pasiey o13peg

A Aefawuer

6.5. Outputs:

"U0I12BSUEY 51U} 0} PUNOY 130 ON

puelg
JaquinN auoyd
|1ew3

aweN

WVOZ:60:ZT JeAIRd3Y PRlewoIny/Ieing

SRS | 61-0-6T poweld ysswewpeld

Ly perepdn panoiddyy/psjeyniu

0

$5320NS

1dn
wied
791

98858FICPEFSSIILLBEE8XE

SME}S UOIESUEL 303172

A UOEDYNION A J3¥oeil | Spunjay

X0JoJld EJIZOW - 8X049

Wd $0:80:Z1 ‘o€ few nyL

AJus.LIn)unowy smejg

pasn Aauaaun)
SMielg

3poj JUalARg
Aemageny
unowy

J uonesues

98858+9CFEFSSTITLYBCTEXE

Spunjal/#/uroygx

Refund Status Check Output

Fig 6.2

13

=
=2
o
=
=2
(@)
4
(9]
()
<
O
(2]
)
=
©
i)
w
©
c
=}
[t
Q
o

Fig 6.3

*|NJSS22INS SEM punjay

X0j3l14 €|jiZOW - 8X04

Wd L1:80:Z1 ‘0€ Aew nyL

CHAPTER 7: REFUND INTEGRITY WORKER

7.1. Objective:

The objective of this worker is to automate things. As the worker runs

asynchronously by itself, at the time specified by the cron job, no one has to manually
run it. It is capable of handling refunds in bulk amount.

7.2. Procedure:

1.
2.

Every morning at 4 a.m. IST, the Sidekiq worker starts its execution.
Its first job is to determine and fetch all the pending transactions from the
previous day to 3 days ago.
Once fetched, the transactions are executed in a batch of hundred until
exhausted.
The next step is to obtain and select the refund from current batch. Further
processes are repeated for each refund transaction.
Once the refund transaction is selected from the batch, the next task is to get
the corresponding payment transaction for the refund.
The corresponding gateway name and Refund ID is logged.
In the next step, we make a call to the gateway.
Next the extraction of the refund status is done from the gateway by Faraday
HTTP Request.
After the extraction of the refund status, it is categorized based on the
response from the payload into the following four categories, namely

e Pending (step 10)

e Failed (step 13)

o Gateway Timeout (step 14)

e Success(step 15)

10.In case of a pending refund status, the refund transaction and worker state

details are logged.

11.Then it is checked if the return request is older than two days, if so job is

enqueues to emailer_queue and transaction details are sent to the tech team
as an email.

12.After that the refund id and state is added to the refund_statuses array.
13.1In case of failed transaction status, the refund status is updated to failed and

refund id and state is added to the refund_statuses array.

15

14.In case of gateway time-out refund status, the refund status is updated to
gateway_timeout and refund id and state is added to the refund_statuses
array.

15.1n case of success transaction status, the refund status is updated to success
and checked if the payment has box8 wallet money.

16.1f yes, then a refund is created for the corresponding amount of box8 wallet
money and the respective refund id and state is added to the refund_statuses
array else the refund id and state is directly added to the refund_statuses
array.

17.After the updation in the refund_statuses array the next refund transaction is
selected and the same steps are followed until all batches are exhausted.

18.RSpec Tests are written and all cases are tested.

7.3. Input:

All inputs are automatically fetched by querying to the database for refund
transactions whose status is pending.

16

Dayananda Sagar University, Bangalore

7.4. Flowchart:

Cron Scheduled Sidekiq Worker Execution at 4AM everyday

v

enqueue job to
emailer queue

v

 sends transaction |
details as email to
tech team)

Fig 7.1: REFUND INTEGRITY WORKER FLOWCHART

4 Internship at Box8 V

v

refund state to
refund statuses

array

A 4

select next refund |

A

-

(Fetch all pending pending | te-a batch f
Start refunds between exegt(:)oe l?efuang A J select refund
prevmus day to 3 ‘ | from batch
| ~ daysago transactions | atieranE L
~ get the refund ~ Logthe
status from the fotch the gateway corresponding cor;g;;:::limg
gateway by gateway and tran ST AT th e
_Faraday Request ~_refund ID
extract the status
» from the response
payload
v v : . v v
GATEWAY
PENDING ‘ ’ FAILED ‘ ‘ TIMEOUT ’ ‘ SUCCESS ’
t&g%g:ﬁl;;fu;;% update refund update refund update refund
SRR T 'FPt'i?Ile %).. A status to . iy status to {
Jetails)) "gateway_timeout”| SUCCESS)
P——, S T
if the refund false false
. if payment has
request is older
than 2 days box8 money
—_— v v
true » add refund id and |«

¥

create refund for
corresponding
box8 money

-

transaction |

7.5. Output

{l.LNNOWY aNN43H~SS30X 3. apodasuodsayfed,’ 3 TIv4.. Smels

- Jaguinyajiqow

ZIZ4APHesmuRYRIBW, YZZIdOCOW, L PIURYDISW, 'C ST S UNOWR, | 2727 100 TTT W PIUCRORSURI, E E1Rp, | pajle] uswife,; abessaw, HOUY T LNIWAY. ,BP0d, ase), Ss800ns, } :Apoq asuodsal

‘002 :@po2” esuodsal
‘1dn :apowuawiAed

‘adauoud Aemarefuawied

T avvanr v vasvesuse o dill 1PI UDBOESUEY

2p9) Nd £5:6 ‘72 ABIN 114

Cosr wuu DI 1BPIO
o5 pl Bupioen

HOYY3 aNNd3d

- kBojouyoaay 0y
<woo'sizua|gxoq@fdaiou> gxog

uonaNpold JUaLIUCIAUS

{.34NIvd NXL:LSNLVLS. pasiey

LINNOWYANNI3d. T

QINX L. 087 =" """ e Golauod, AINL} :Apoq - asuodsal

‘00Z :2p0o2” asuodsal
'|dd ‘@pow juawfed

1310 O d wiked Aemaref juswded

2p 9) Wd Br:6 72 BN 114

208 ;e @

X0Ja114 e||IZO - |l gX0g - UI'gxoq@3IyoInd-fefawuel - 17-50-610Z - Jnjie4 punjay [A6ojouyda]
Wd LZ:€1:Z1 ‘o€ Aew nyL

Fig 7.2

‘0=~ enST Pl 1apIo
I g ipl Buioen
‘gronTooZogou suoyd

HOYH3 aNnd3d

~ ABojouyaar 01
<woosizpa|gxoqdfdaious gxog

o B B o O -
punjar frewsy |

x 3y [ABo

~ 135M01g gaM X0J311d

18

CHAPTER 8: GOOGLE PAY INTEGRATION

8.1. Objective:

The objective of implementing Google Pay is to provide customers to use
Google Pay for making their payments for their Box8 and MOJOPizza orders. Google
Pay is a convenient and highly used payment platform so this will help customers to

checkout their orders easily.

8.2. APlIs:

The following list consist of the APIs implemented in the Google Pay

controller:

1. inititate_collect
2. callback

3. check_status

4, initiate_intent

8.3. Process (along with inputs and response):

The flow consists of 2 phases :
1. Initiate phase
2. Validate phase

Step 1: Initiate Phase:

i) Initiate collect phase:

Customer clicks ‘pay using Google Pay’ button.

Pop-up shown with pre-populated Customer’s mobile number with
option to edit.

Payment transaction is created for the Customer.

Transaction details are generated and stored.

OAuth Credential is generated for the current transaction.

Payload sent to Google Pay API's link, as provided and instructed by
Google

Status response is received and appropriate json is rendered.

19

API : initiate_collect
Method : POST
Params: {
header: session-id (string),
body:
'currency_redeem' (boolean),
'payment_option_id' (integer),
'address_id' (integer),
'remark’ (string),
'outlet_service_type' (string),
'order_time' (long integer),
'cash_order_id' (integer),
‘client_phone_number’ (string)

}
URI : /gpay/initiate_collect

Possible outcomes : The response contains any of the following

possible
values for the transactionStatus object.

o 200:AllOK

« 400 : Request contains invalid Phone Number or wrong
parameters

e 404 : Account linked to Phone number was not found
« 409: Duplicate transaction

Sample success response

"Data": {
"merchantTxnld": " BX81088888888888857451",
"Time_to_live":"185"

}’
"meta": {

“code”: 200,

“status”: "OK",

“message”: "All OK!",

“error”: false,

“version”: "1.0",

"copyright": "Copyright 2015 Box8"
}

20

Sample invalid phone number response

"data": {

"merchantTxnld": " BX81088888888888857451",
"time_to_live": "185"

3

"meta": {

"code": 400,

"status": "Not OK",

"message": "Request contains invalid Phone Number or wrong parameters",
"error": true,

"version": "1.0",

"copyright": "Copyright 2015 Box8"

}

Sample account not found response

"data": {

"merchantTxnld": " BX81088888888888857451",
"time_to_live": "185"

3

"meta": {

"code": 400,

"status": "Not OK",

"message": "Account linked to Phone number was not found",
"error": true,

"version": "1.0",

"copyright": "Copyright 2015 Box8"

}

21

Sample duplicate transaction response

{
"Data": {
"merchantTxnld": "BX8106568115518798586179",
"Time_to_live":"185"
}’
"meta": {
“code”: 4009,
“status”: "Not OK",
“message”: "Duplicate Transaction",
“error”: true,
“version”: "1.0",
"copyright": "Copyright 2015 Box8"

ii). Initiate intent phase :
e Check for device compatibility (isReadyToPay) & whether the device is
e android only
e |f both the response is true, initiate using intent flow, else collect flow

API : initiate_intent
Method : POST
Params: {
header: session-id (string),
body:
'currency_redeem' (boolean),
'payment_option_id' (integer),
'address_id' (integer),
'remark’ (string),
'outlet_service_type' (string),
'order_time' (long integer),
'cash_order_id' (integer),
}
URI : /gpay/initiate_intent

Sample response for initiate intent

{

"data": {
pay_details ={
"apiVersion": 2,
"apiVersionMinor" : 0,
"allowedPaymentMethods" : [
{
"type" : "UPI",
"params" : {
"payeeVpa'": box8vpa @axisbank,
"payeeName": Box8,
"mcc": "5812",
"transactionReferenceld": BX81088888888888857451,
"tokenizationSpecification" : {
"type" : "DIRECT"
}
11,

"transactioninfo" : {
"totalPriceStatus" : "FINAL",
"totalPrice": "100",
"currencyCode" : "INR",
"transactionNote" : "Payment for your Box8 order
with Transaction ID BX81088888888888857451",
}

}
}?
"meta": {
“code”: 200,
“status”: "OK",
“message”: "Intent Pay Params Generated",
“error”: false,

“version”: "1.0",
"copyright": "Copyright 2015 Box8"

23

Sample not android transaction response

{
"data":[],
"meta": {
“code”: 400,
“status”: "Not OK",
“message”: "Try Collect flow",
“error”: true,
“version”: "1.0",
"copyright": "Copyright 2015 Box8"

Step 2: Validate phase:

e Polling starts after 30s of Google API call, with an interval of 5s
between each request in case where there no callback received.

Collect Flow

API : check_status
Method : POST
Params : { header: session-id (string),
body: ‘merchantTxnld’(string)
}
URI : /gpay/check_status

Intent Flow

API : check_status

Method : POST

Params : { header: session-id (string),

body: ‘merchantTxnld’(string),
‘flow_type’ (string),
‘reference_id’ (string)
}
URI : /gpay/check_status

Possible outcomes : The response contains any of the following possible
values for the transactionStatus object.
o SUCCESS
o FAILURE: Transaction has failed
o IN_PROGRESS: Transaction is in progress
o« PAYMENT_NOT_INITIATED: Payment hasn't been initiated by the user
o DECLINED: Payment has been declined by the user
o EXPIRED: Payment request expired
o DOES NOT EXIST

If box8 server got the callback from axis server, it checks the status of the
payment transaction from database and sends the response to box8 client.
Otherwise it makes another api call to axis server for checking status of
transaction and then responds back to t he client.

Sample Successful transaction response

"data": {

"error": false,

"merchantTxnld": " BX81088888888888857451",
"amount": "4.0",

"msg": "Payment Successful. Order Created.",
"status": "SUCCESS",

"transaction_successful": true

}’

"callback_success": true,

"meta": {

"code": 200,

"status": "OK",

"message": "Payment Successful. Order Created.",
"error": false,

"version": "1.0",

"copyright": "Copyright 2015 Box8"

}

25

Sample Payment Declined response

"data": {

"error": true,

"merchantTxnld": " BX81088888888888857451",
"amount": 99,

"msg": "Payment failure",

"status": "DECLINED",
"transaction_successful": false

2

"callback_success": true,

"meta": {

"code": 400,

"status": "Not OK",

"message": "Payment failed",
"error": true,

"version": "1.0",

"copyright": "Copyright 2015 Box8"
}

Sample Payment not found response

"data": {

"error": true,

"merchantTxnld": " BX81088888888888857451",
"amount": O,

"msg": "Payment failure",

"status": "NOT_FOUND",
"transaction_successful": false

i

"callback_success": true,

"meta": {

"code": 400,

"status": "Not OK",

"message": "Payment failed",
"error": true,

"version": "1.0",

"copyright": "Copyright 2015 Box8"
}

26

Sample Payment pending response

"data":[],

"callback_success": false,

"meta": {

"code": 400,

"status": "Not OK",

"message": "Payment pending",
"error": true,

"version": "1.0",

"copyright": "Copyright 2015 Box8"
}

Sample expired state response

"data": {

"error": true,

"merchantTxnld": " BX81088888888888857451",
"amount": 99,

"msg": "Payment failure",

"status": "EXPIRED",
"transaction_successful": false

2

"callback_success": true,

"meta": {

"code": 400,

"status": "Not OK",

"message": "Payment failed",
"error": true,

"version": "1.0",

"copyright": "Copyright 2015 Box8"
}

27

Sample transaction does not exist response

"data": {

"error": true,

"msg": "Transaction does not exist",
"transaction_successful": false

}’

"meta": {

"code": 409,

"status": "Not OK",

"message": "Transaction does not exist",
"error": true,

"body": null,

"version": "1.0",

"copyright": "Copyright 2015 Box8"
}

Sample for any other (invalid) response

"data":[],

"callback_success": true,
"meta": {

"code": 409,

"status": "Not OK",
"message": "Unknown State.",
"error": true,

"body": null,

"version":"1.0",

"copyright": "Copyright 2015 Box8"
}

Axis server sends a callback to box8 server regarding the status of
transaction.

Order is created on the basis of callback also. Basically, it's a race
condition between check status api and callback api, whichever gets
the information about transaction success state first, makes the
order.

Axis sends aes encrypted payload for every transaction on box8
server. Payload is decrypted with aes key provided by axis and the
checksum is matched with rsa private key (public key is provided to
axis by us for checksum encryption). Order is created (if not already)
on the basis of payment status.

Box8 client gets the payment status and it can either continue to
poll (payment status pending) or redirect to cart (in case of web) /
payment page(in case of app) for failed payment or stop polling
(transaction success). Order will be created in transaction success
case.

RSpec Tests are written and all cases are tested.

Response in order successfully created

"data": {
"error": false,
"merchantTxnld": "BX8106555015353576757451",
"amount": "1.0",
"msg": "Payment Successful. Order Created.",
"status": "SUCCESS",
}’
"transaction_successful": true
"meta": {
"code": 200,
"status": "OK",
"message": "Payment Successful. Order Created.",
"error": false,
"version": "1.0",
"copyright": "Copyright 2015 Box8"

29

Response in case of payment success but item gets sold out after payment

"data": {
"error": true,
"merchantTxnld": "BX8106555015353576757451",
"amount": "1.0",
"msg": "Payment Successful, order couldn't be processed",
"status": "FAILED",
"transaction_successful": true

}’

"meta": {
"code": 200,
"status": "OK",

"message": "Payment Successful, order couldn't be processed",
"error": false,

"version": "1.0",

"copyright": "Copyright 2015 Box8"

Response in amount mismatch

"data":{
"error": true,
"merchantTxnld": "BX8106555015353576757451",
"amount": "1.0",
"msg": "Payment Successful, order couldn't be processed",
"status": "FAILED",
"transaction_successful": true
3
"meta": {
"code": 200,
"status": "OK",
"message": "Payment Successful, order couldn't be processed",
"error": false,
"version": "1.0",
"copyright": "Copyright 2015 Box8"

30

Dayananda Sagar University, Bangalore

8.4. Flowchart:

COLLECT FLOW
8b - 8 | | 8b - 7
l response I‘
ih-1 >= check status } -4
v v
(i 2
CLIENT ; >= selects gpay I > BOX8 SERVER
=
8a-2 8b-6
L > callback 3
| 8b-5 -
AXIS SERVER
response p Y ~\
' A | initiate txn
| method call ‘
8b-4 | 8b -3 | |
i check status [« 4
‘ transfers amount | 6

to axis account

|

5
Google Server }4?

Fig 8.1: Google Pay Collect Flowchart

4 Internship at Box8 V

sends payload and

makes API call

INTENT FLOW

| g

1 ; . .
Box8 App —* Selects GPAY —P{ isReadyToPay? ‘
T : :
12a-1 : _ iy -

loadPaymentData | l
A :
Fal
Go to collect flow €————— SDK i ol
3b Ja
) ' ‘ A
8
2 Response 10 ; 4
¥ l— ; _ .. \

initiate intent ‘

i . .
payload response }4— Box8 Server
12a T
2

‘-=| check status ‘

12b -1 }} e I 12b -1
_ 12a-3
Axis Server %
‘ 12a-4 | | 12a-5

"" response |

Fig 8.2: Google Pay Intent Flowchart

32

Dayananda Sagar University, Bangalore

8.5. Output:

INTENT FLOW
K D w44 0 98%

Fig 8.3

134

Box8 ID: BX8228471115592257039281

€7 | ICICI Bank 0767
- janmejayspurohit-1@okicici

Proceed to pay

G Pay

A Internship at Box8 WV

COLLECT FLOW

CORPORATE - 25% OFF PARTY ORDER OFFERS HOME Good Morning, Janmejay Purohit
BOX(] T ————
We start serving from 10:00 AM. Prebook your meal NOW!
SIGN IN JANMEJAY PUROHIT YOUR CART
DELIVERY ADDRESSES TEST ADDRESS Mineral Water il
EAYMENTS 8 APPLY COUPON
Wallet .
Lo Axis ° Your order will be delivered between
Pl Google 11:30 AM - 12:00 PM
uPI Test Pay
UPI Google Pay
Pay Later
it MOBILE NUMBER
TLIT000
Net Banking
MAKE PAYMENT
Food Cards
PayPal
Cash

Fig 8.4

BOX(]

Payment in progress...

Please don't close this window!

Open your UPI App to accept the payment request.

Fig 8.5

34

Dayananda Sagar University, Bangalore

— 7
[® @] | Elements Console Sources Network Performance Memory Application Security Audits @ca1 i X
® O =™ ¥ Q viw I= ™ []Groupbyframe | [Preservelog [Disable cache | [Offine Online ¥
Filter [J Hide data URLs [} XHR JS CSS Img Media Font Doc WS Manifest Other
| 2000 ms. 4000 ms 6000 ms 000 ms. 10000 ms 12000 ms 14000 ms 16000 ms 18000 ms 20000 ms 22000 ms 24000 ms 26000 ms 28000 ms
Name X Headers Preview Response Timing
J CNecK_sSTatus/ongin=poxs_we.. {) R —
v (o
__| check status?origin=box8 we. callback_success: true
|| check status?origin=box8 we. »data: {error: false, merchantTxnId: "BX8228471115592736049798", amount: "1.8", msg: "Payment Success”,.}
check_status?origin=box8_we. wmeta: {code: 200, status: "OK", message: "Payment success", error: false, version: "1.0",..}
s code: 200
check _status?origin=box8_we. copyright: "Copyright 2015 Boxg"
check status?origin=box8_we. error: false
check status?origin=box8_we.. - Message:. “Payment ‘success™
= status: "OK”
7/14 requests | 6.6 KB /6.6 KB tr... version: "1.0"
X

Console Rendering What's New X

Fig 8.6 Polling

O WAdm 63% ! 10V dAdn 61%
< BOX8- Desi Meals :
box.8@axisbank *
>
) OL
Paying BOX8- Desi Meals
(box.8@axisbank) Paying BOX8- Desi Meals
(box.8@axisbank)
? 1
=
emmmmmmmmmm e Box8 ID: BX8228471115592731697741
: Box8 ID: BX8228471115592736049798
1
P
1
1
! Requested - 8:56 AM
! Expires on 31/5/2019, 8:59
TOAM
i Box8 ID: BX82284711155
I 92731697741
1
| . ¢? | 1c1cl Bank 0767
i . m . Payment processing...

Proceed to pay

Contact) _
@ - IN PARTNERSHIP WITH ﬂlCiCIBank INEAHTHERSHSRIWITH ﬂlClCl Bank

Fig 8.7 Fig 8.8 Fig 8.9

4 Internship at Box8 W
P 35

<1

Requested by
BOX8- Desi Meals

Box8 ID: BX8228471115592736049798

Paid % 1 v
Today « 9:03 AM

Fig 8.10

UPI Transaction 1D
915109869260

To: BOX8
box.8@axisbank

From: JANMEJAY S PURCHIT (ICICI Bank)
janmejayspurohit-1@aokicici

Google Transaction ID

CICAgKCqvILaGQ

Payments may take up to 3 working days to be
reflected in your account

Track Order

Order placed

Delivered Prepared

Dispatched

Fig 8.11
Order Summary

Tracking Id : YZYMZX
Name : Janmejay Purohit
Contact Number : 8073007660

Delivery Address : Take away - Test Address

Order Details

Name of the item Quantity
Mineral Water - 1

For immediate (60 mins) consumption only.

Total Payable:

Mode:

1.0

Online Paid

36

CHAPTER 9: PHONEPE INAPP INTEGRATION

9.1. Objective:

InApp is a Merchant's Progressive Web Application present inside PhonePe's
"Apps" section. The objective of this task is to include Box8 into the InApps section of
PhonePe to have its presence and thus compete in the food section of the PhonePe
eco system.

9.2. Procedure:

1. Register Box8 with PhonePe and receive the merchant credentials
2. Install PhonePe JavaScript SDK (JS-SDK) and create PhonePe instance for
the same
Process begins when customer selects Box8 from PhonePe InApps
JS-SDK invokes Box8 Web App
JS-SDK requests customer to get access to the location
If customer agrees then location is used to fetch the outlet, else a default
outlet is shown and a manual input for the location is expected.
7. The customer then builds the cart
8. Once the cart is built, the JS-SDK asks the permission to share the
customer’s details with Box8.
9. If the customer denies to share then a manual login is awaited.
10.If customer agrees then a grant token is generated and sent to Box8
Server
11.Box8 server makes an API call to the PhonePe server using the grant
token to fetch an SSO (Single Sign On) Token.
The result may be a:
e Success
e Timeout
e Wrong Credentials
e Bad Request
12.All the server to server communication are SHA256 encrypted and Base64
encoded.
13.The SSO Token consists of customer’'s name and email id in encrypted
form
14.The details are decrypted.

o v kW

15.1f the customer is an existing customer, the customer is authenticated
and logged in.

16.If the customer is a new customer, an account is created for the
customer.

17.The unsigned session id then gets signed and the cart is reassigned with
the new session id

18.The customer then needs to make payment. JS-SDK is invoked and it
redirects to the PhonePe payments page.

19.0nce the payment is made, JS-SDK redirects back to Box8 and validation
takes place

20.The status of the transaction is fetched and it could be in either of the
states:

e Success
e Pending
e Failed

e Gateway Error

21.Based on the response, appropriate redirection is done.

22.A webhook is also received for these transactions.

23.The webhook is to be decrypted and is helpful where the validation
results in a pending state but the webhook gives a success case.

24.To prevent creation of multiple orders for a single transaction, race
condition check is made.

25.A key is generated and stored in redis using which optimistic locking
approach is implemented.

26.Either the validate call or the webhook call can proceed to making an
order, and not both

27.The order once created, locks the key for that transaction.

38

Dayananda Sagar University, Bangalore

Sy
9JepI[RA snjeIs YAy 1y
J) ‘) Jooygapm
J|_‘ W 18s() 91081 \)
p (A N 4 £y _
.—. s OQ.— _ _ \
Juawieg 33.5 & , (N ; asuodsay
|_| v v v 07 4 y 19s() MAN . A
It — 9 J
0€ aniy
juawded ajenmut J8AI8S gXog 1T
T - « 0z
b J
_ 62| l_lv ¢aosn) Bunsxg 1o \; >
| [y \ | 61
LT _ dassf —
91 ¢l ¥ -
- < b4 0
e p A A AA (44 (<)}
 nwp U 5 i 20
™ 19pnQ 18pusy > eopng > (T
L) REINEN
H _ agauoyg
|zZLIOYINY uonov[ag ,
UonedoT [RNUR) Ua¥0L 0SS
. - | | e I
ang
a €T mmﬁw & UONR0]
(10y 3sanbay 6 v
L juasqe uorRo0T Jt ' 0SS 10y 3senbey oo el ’
, , uonoag sddy wox
\ d gxog s393[8§ J19s(]
8T - 1 ddy agauoyg
> uoneoo] « = QS seyoau] =
gg| Ul gXog |_ { J I . $58008
€1 > . uonpooj aAtf «——
" (44 01 saa1bp Jas 1-4901
H _ €]
= . A AT o uoneao| €901} uoneooy Jesp e
m (\ 9 J0j 1s8nbay L SSR0AR _n
rs] abed sjuamied) N uoneooj aath
W aJauoyJ ayoAu] 3 4 | 01 saaubesi(Jasp) 1-201
o J (T-®01 . 3
- P | wery | , .
L. 3 gx0g SaNOAU] (_
™M S \) Juswfed GE
o L of | SeyRW Iawoisn) €

A Internship at Box8 WV

9.4. Inputs:

Customer’s location
Customer’'s Name
Customer’'s Phone Number
Order Details

Delivery Time

Merchant ID

Salt

JS-SDK

40

Dayananda Sagar University, Bangalore

9.5. Outputs:

Oovddll 96%

Bengaluru ~ . @
Money Transfers
To Contact To Account To Self Bank Balance
View All View My Refer & Earn
Offers Rewards Min. ¥75

Recharge & Pay Bills

g & ¢ =

Recharge Electricity Credit Card
= I
< cm
Postpaid Landline Broadband Gas
Water Datacard Insurance Municipal Tax

' ”e

Google Play Buy Gift Cards

f 88 ® &

Home Stores Apps My Money History

Fig 9.2

4 Internship at Box8 V

t0WAdn 62%

‘ , Please wait...

Fig 9.3

=

10V dd n 62%
X

All-In-1-Meals FILTER {4

Pay only =+78- 3100 Buy ¢IZXD >

1

IN YOUR CART

CLASSIC
Chole Tikki Meal

Amritsari chole with side of veg tikkis + Dal
Makhni/Chole/Dilli Rajma + Paratha/Rice + Salad +
Chutney + Dessert

Q@ =

Pay only =t98- %111 Buy ¢IZXD >

1items VIEW CART W

Fig 9.4

YOUR CART

LOGGED IN AS Janmejay Switch User

PROCEED TO PAYMENT

®
rigo.c R

Fig 9.5

et O v v ddu 62%

Permissions

BOX8 is requesting for your Name, Email ID
and Mobile Number to provide you a smoother
experience.

Your Card or Bank Details will NOT be shared.
By continuing you are accepting applicable Terms
and Conditions

X Deny v/ Allow

0w vdd m 62%

X

YOUR CART

@ I'll pick up

0}

PROCEED TO PAYMENT

(=
rig 0.7 R

O vddn 2%

BOX8
Transaction ID
Pri id s $1905310859527722471749 COPY
rice valia Tor
< 208 O 2:58
Payment to
Debit from:
BOX8
3208
BHIM UPI DEBITCARD CREDITCARD NET BANKING
Debited from
& XXXXXXXXXX890126 o
% 208 will be debited & XXKXXKXXXXBO0126 3208

UTR: 915132674361
HOXOKXHKXXAAXKXBI0124
v 890 O CHECK BALANCE
QF YHHXXXXXXXBBO127 O

& XXRXXXXXXX890125

ADD ANOTHER BANK ACCOUNT

Powered by m

DONE

Fig 9.8

' Please wait...

Fig 9.10

43

CONCLUSION AND FUTURE WORK

All the expectations and requirements by Box8 was fulfilled in time using top
notch framework and my coding expertise maintaining the benchmark standards.
The internship work has been accepted and is already in the production
environment.

There is no much room for future work as | have completed end to end
integration. Future work is subject to changes and newer practices that may be
introduced by the payment service providers (PhonePe, Paytm, Axis, PayPal, etc)

44

11.1.

11.2.

11.3.

11.4.

11.5.

11.6.

11.7.

CHAPTER 11: REFERENCES

Google Pay APIs for India:
https://developers.google.com/pay/india/api/otherapis/omnichannel

PhonePe InApp Integration Documentation:
https://developer.phonepe.com/docs/brief-step-by-step-guide

Gitlab Documentation: https://docs.gitlab.com/ee/README.html

Redis Documentation: https://redis.io/documentation

Elastic Search: https://www.elastic.co/guide/index.html

RSpec Documentation: http://rspec.info/documentation/

PostgreSQL Documentation:
https://www.postgresql.org/docs/10/index.html

45

https://developers.google.com/pay/india/api/otherapis/omnichannel
https://developer.phonepe.com/docs/brief-step-by-step-guide
https://docs.gitlab.com/ee/README.html
https://redis.io/documentation
https://www.elastic.co/guide/index.html
http://rspec.info/documentation/
https://www.postgresql.org/docs/10/index.html

BOX(:]

MEALS IN A BOX

Date: 28 May 2019

To Whom It May Concern

We are glad to inform that Mr. Janmejay S Purohit from Dayananda Sagar
University is undergoing internship at Box8 in Payments Team. His tenure of
internship is from 15% January 2019 to 15 July 2019.

During his tenure as Software Development Intern he has worked on various
projects like

e Google Pay Omni Channel Payment Integration
e Refund Status Check from Box8-POS

e Refund Integrity Worker

e PhonePe In-App Integration (On-going)

We found him extremely hard working, dedicated and inquisitive. His
association with us has been very fruitful.

For Poncho Hospitality Pvt. Ltd.(Box8)

Abhishek

Tech Lead, Payments Team
+91-8092200694
abhishek@box8.in

